L^{∞} Compactness of solutions of Leray-Lions quasilinear problems

D. Arcoya

We present the **joint work** with **M. C. M. Rezende** and **E. A. B. Silva** (Universidade de Brasília). For a (**not necessarily smooth**) bounded domain Ω of \mathbb{R}^N , $N \geq 2$ and a Carathéodory vector valued function $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^N$, we study the compactness of the inverse of the Leray-Lions operator $A(u) = -\operatorname{div}(a(x, \nabla u)), u \in W_0^{1,p}(\Omega), 1 . Denoting by <math>p^*$ the Sobolev exponent, in the main result it is proved the compactness of $A^{-1}: L^{\sigma}(\Omega) \to L^{\infty}(\Omega)$ if $2N/(N+2) , provided <math>\sigma > \max\{N/p, (p^*/2)'\}$. Also, for $\sigma > p_* := (p^*)'$, the operators $A^{-1}: L^{\sigma}(\Omega) \to W_0^{1,p}(\Omega)$ and $A^{-1}: L^{\sigma}(\Omega) \to L^q(\Omega)$ are compact for every $1 \leq q < [(p-1)\sigma^*]^*$. In contrast, it is also established that $A^{-1}: L^{p_*}(\Omega) \longrightarrow L^{p^*}(\Omega)$ and $A^{-1}: L^{p_*}(\Omega) \to W_0^{1,p}(\Omega)$ are not compact. The compactness of the set of solutions for the more general operator $A(u) = -\operatorname{div}(a(x, u, \nabla u))$ is also studied. As an application we improve previous results on the existence and multiplicity of solutions for a class of problems involving the *p*-Laplacian operator under a local Landesman-Lazer condition for arbitrary bounded domains.